Definition. Let $f$ be an entire function. If the following set
$$G_f=\{\rho>0\;:\;\exists\; A, B>0\;\operatorname{such\;that}\;|f(z)|\le Ae^{B|z|^\rho},\;\forall\;z\in\mathbb{C}\}$$
is nonempty, we define $\rho_f=\inf G_f$ and call $\rho_f$ the order of growth of $f$. If $G_f$ is empty then we define the order of growth of $f$ to be $\infty$.
For example, the growth rate of constant function $f(z)=c$ is $0$. The growth rate of the degree-$n$ polynomial is $n$. These two are obvious cases. Now we dive into a deeper principle.
Theorem. If $f$ is an entire function,
(1) For each $\rho\in G_f$, $\exists\; C>0$ such that $\mathfrak{n}(r)\le Cr^\rho$ for all the sufficiently large $r>0$.
(2) Let $z_1, z_2,\cdots$ be the zeros of $f$ with none of which is $0$. Then for all $s>\rho_f$ we have
$$\sum_{n=1}^{\infty}\frac{1}{|z_k|^s}<\infty$$
To prove the theorem, we need following lemma.
Lemma. Let $f$ be an entire function and $l\in\mathbb{N}$. Suppose $g(z)=z^lf(z)$. Then
(1) $G_f=G_g$
(2) That $\{\mathfrak{n}_f(r)r^{-\rho}\;:\; r\ge 1\}$ is bounded above is equivalent to $\{\mathfrak{n}_g(r)r^{-\rho}\;:\; r\ge 1\}$ is bounded above.
proof. This is a proof of the previous lemma. Suppose $|f(z)|\le Ae^{B|z|^\rho}$ for all $z\in\mathbb{C}$. Since $l\in\mathbb{N}$ is fixed, $\lim_{r\to\infty}r^le^{-r^\rho}=0$. So we have $M=\sup_{r>0} r^le^{-r^\rho}$ thus
$$|g(z)|=|z|^l|f(z)|\le A|z|^le^{B|z|^\rho}=A|z|^le^{-|z|^\rho}e^{(B+1)|z|^\rho}\le AMe^{(B+1)|z|^\rho}$$
This implies if $\rho\in G_f$ then $\rho\in G_g$. For the converse, suppose $|g(z)|\le Ae^{B|z|^\rho}$ for all $z\in\mathbb{C}$. If $|z|\ge 1$ then $|f(z)|\le |g(z)|$ so there is nothing to prove. If $|z|<1$ then $M=\max_{|z|<1}|f(z)|$ exists. Let $A'=\max\;\{A, M\}$ then $|f(z)|\le A'e^{B|z|^\rho}$ holds so the proof is over. Then (2) is obvious since $\mathfrak{n}_f(r)+l=\mathfrak{n}_g(r)$ and $\lim_{r\to\infty} lr^{-\rho}=0$.
Now we begin the proof of the Theorem.
proof. (1) If $f(0)=0$ then we have $l\in\mathbb{N}$ such that $f(z)=z^l g(z)$ for all $z\in\mathbb{C}$ and $g$ is non-vanishing in the small neighborhood $U$ of $0$. Then by the previous lemma, $G_f=G_g$ and $\{\mathfrak{n}_f(r)r^{-\rho}\;:\; r\ge 1\}$ is bounded above if and only if $\{\mathfrak{n}_g(r)r^{-\rho}\;:\; r\ge 1\}$ is bounded above. Hence it suffices for us to consider only the case when $f(0)\ne 0$. Since $f(0)\ne0$ we may use \textbf{Lemma 2.4} so
$$\int_0^R\mathfrak{n}(x)\frac{dx}{x}=\frac{1}{2\pi}\int_0^{2\pi}\log|f(Re^{i\theta})|\;d\theta-\log|f(0)|$$
Now take $\rho\in G_f$ then we have $A, B>0$ such that $|f(z)|\le Ae^{B|z|^\rho}$ for all $z\in\mathbb{C}$. Then the above becomes
$$\int_0^R\mathfrak{n}(x)\frac{dx}{x}\le BR^\rho+\log A-\log|f(0)|=BR^\rho+D$$
for some constant $D$. Meanwhile,
$$\int_0^{2r}\mathfrak{n}(x)\frac{dx}{x}\ge\int_r^{2r}\mathfrak{n}(x)\frac{dx}{x}\ge\mathfrak{n}(r)\int_r^{2r}\frac{dx}{x}=\mathfrak{n}(r)\log2$$
Thus if $r\ge 1$ then $\mathfrak{n}(r)\log2\le B(2r)^\rho+D$ so $\mathfrak{n}(r)\le Cr^\rho$ for some constant $C$.
(2) Suppose $s>\rho_f$ then we have $\rho\in G_f$ such that $\rho<s$. Here we use the argument above the \textbf{Lemma 2.4} by letting $\phi(z)=z^{-s}$ and the result of (1). Suppose $z_1, z_2, \cdots$ is aligned in the ascending order of absolute values and let $a=|z_k|$ where $|z_{k-1}|<1\le|z_k|$. Then for $1<R$,
\begin{align*}
\sum_{1\le|z_n|<R}|z_n|^{-s}&=\int_a^R r^{-s}d\mathfrak{n}(r)=\int_1^R r^{-s}d\mathfrak{n}(r)\\
&=R^{-s}\mathfrak{n}(R)-\mathfrak{n}(1)+s\int_1^R\mathfrak{n}(r)r^{-s-1}dr\\
&\le R^{-s}CR^\rho+s\int_1^RCr^\rho r^{-s-1}dr\le C\left(1+\frac{s}{s-\rho}\right)
\end{align*}
So letting $R\to\infty$ the sum converges. Since the number of zeros of $f$ whose absolute value is smaller than $1$ is finite, $\sum|z_n|^{-s}$ converges.
For example, let us evaluate the order of growth of $f(z)=\sin\pi z$. We have
$$\sin\pi z=\frac{e^{i\pi z-e^{-i\pi z}}}{2i}$$
so $|f(z)|\le Ce^{\pi|z|}$ and the order of growth of $f$ is $1$. Since $f$ vanishes at every integer, from (2) we obtain a familiar formula that if $s>1$ then
$$\sum_{n\in\mathbb{Z}}\frac{1}{n^s}<\infty$$
This also illustrates that the condition $s>\rho_f$ cannot be improved to $s\ge\rho_f$.
위 Theorem의 (1)은 Jensen's formula에서 한걸음 더 나아가 growth order가 $\rho$인 함수, 즉 $e^{|z|^\rho}$와 비슷한 정도로 성장하는 함수의 영점의 개수 $\mathfrak{n}(r)$이 대략 $r^\rho$와 비슷한 정도로 성장한다는 것을 보여준다. 같은 정리의 (2)는 영점의 분포에 대한 정보를 담고 있다. Jensen's formula는 영점의 절댓값이 작을수록 함수의 성장 속도가 빨라진다는 이야기를 하고 있고, (2)는 역으로 함수의 성장 속도가 정해졌을 때 함수의 영점은 그 역수의 어떤 제곱의 합이 수렴하는 정도로만 원점 근처에 모여있을 수 있다고 말한다.
이제 새로운 질문에 대해 답할 차례인데, 우리의 의문점은 정확히 다음과 같다.
1. 집적점을 가지지 않는 복소수열이 주어졌을 때, 정확히 이 점들만이 영점이 되는 전해석함수가 존재하는가?
2. 크기 순서대로 나열된 복소수열 $\{z_n\}$에 대해 만약 그런 전해석함수 $f$가 존재한다면 $|z_1|\le|z_2|\le\cdots$이므로 $\lim_{n\to\infty} |z_n|=\infty$여야 하는데, 그렇지 않으면 Bolzano-Weierstrass theorem에 의해 집적점이 존재하고 그러면 항등정리에 의해 $f=0$이기 때문이다. 따라서 필요조건은 쉽게 찾을 수 있는데, 그렇다면 충분조건은 무엇일까?
[1], Stein, Elias M., Shakarachi, Rami 2003. Complex Analysis. Princeton University Press.
[2], 김영원, 계승혁. 2014. 기초복소해석. 서울대학교출판문화원.
[3], 김영원, 2023. 복소해석학 강의노트. 한빛아카데미.
[4], Rudin, Walter 1976. Principles of Mathematical Analysis 3ed. McGraw-Hill Press.
[5], Munkres, J.R., 2000. Topology 2ed. Pearson Education.
'학부 수학 > 복소해석학' 카테고리의 다른 글
[복소해석학] 3.0. Preface (0) | 2025.05.11 |
---|---|
[복소해석학] 5.3. Infinite product (0) | 2025.05.11 |
[복소해석학] 5.1. Jensen's Formula (0) | 2025.05.11 |
[Complex Analysis], Stein, Chapter3-1 (0) | 2025.04.07 |
[Complex Analysis], Stein, Chapter1 (0) | 2025.03.22 |